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Abstract

The ¯ow of granular solids within rigid walls is modeled using continuum mechanics. The problem is represented
as a viscoplastic ¯ow in which the discontinuity function is taken as in previous works by Gray and Stiles, while the

¯ow rule is modeled by the von-Mises criterion. The resulting model is incompressible and based on non-associated
viscoplasticity. The apparent viscosity results in a non-linear function of the second invariant of the symmetric rate
of deformation tensor and of the pressure. Friction, cohesion and ¯uidity of the granular model are taken into

account. The constitutive model has been implemented assuming steady-state, in which the granular material ¯ows
under a critical state (incompressible behavior). Discretization of the problem has been carried out by ®nite
elements, with direct iteration techniques to solve the non-linear system of equations. The model has been applied to

the massive ¯ow of granular material stored in vertical silos and hoppers with axisymmetric or planar shape.
Comparisons with experimental tests performed by other authors are presented, together with parametric
investigations to identify the main variables a�ecting the response. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Interest in the modeling of the ¯ow of granular solids has been stimulated in recent years by a
number of problems, such as the discharge of grains stored in silos, the manipulation of coal and other
minerals, the transport of sediment in rivers and oceans, etc.

There are several ways to model the ¯ow of granular solids using mechanical sciences: (a) two-phase
¯ow in which the particles have a dynamic in¯uence from drag stresses due to interstitial ¯uid
(Syamalal, 1985); (b) rapid un¯uidized ¯ow in which the stresses due to collisions between particles are
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dominant, as in models based on kinetic theories (see, for example, Lun et al., 1984; Johnson and

Jackson, 1987; Savage, 1988; Ocone and Astarita, 1995); and (c) cohesive and frictional ¯ow, which is

the subject of this paper.

Furthermore, there are several ways to carry out the analysis of cohesive and frictional ¯ows, i.e.

discrete particles; micromechanics; and phenomenological models. In particle analysis one models the

evolution of a set of particles which are interrelated and each particle should satisfy the condition of

conservation of linear and angular momentum (Cundall and Strack, 1979; Potatov and Campbell, 1994).

Because the contacts are modeled, this simulation requires massive computing facilities to track the

position of each particle during the ¯ow. In the micromechanics approach the granular material is

considered as a continuum, but the constitutive equation is obtained from the microscopic behavior and

from the properties of the individual grains (Mehrabadi, 1986). Finally, continuum mechanics is

employed in a phenomenological approach, as in Diez and Godoy (1992), Elaskar et al. (1996), Elaskar

and Godoy (1998a), Gray and Stiles (1991), Haussler and Eibl (1984) and Lade (1977). This work falls

within the phenomenological approach, based on continuum mechanics.

Early work in this ®eld was done by Jenike and co-workers, for frictional materials, using analytical

tools. The solution was limited to simple geometries and material properties. More general models can

be achieved in several ways:

(a) Plastic ¯ow of solids: these are continuum models which are used in plasticity theory to model the

deformations of the bulk material. Examples are shown by Gray et al. (1991), Haussler and Eibl

(1984) and Kolymbas (1994). The transient response at the beginning of the ¯ow requires an

extremely ®ne step to achieve meaningful results. Large strain plasticity models should be introduced

if one attempts to investigate the ¯ow until it reaches a steady-state.

(b) Viscoplastic ¯ow of a non-Newtonian ¯uid: as in the ®rst group, this model employs continuum

mechanics, but with the advantage that both the transient response and the steady state can be

investigated at once. The material properties of cohesion, friction and ¯uidity are combined to

obtain an apparent viscosity, which also depends on the local values of pressure and velocity of the

¯owing granular solid. A steady state analysis has been implemented by Diez and Godoy (1992). In

its original version, the viscoplastic model used a non-associative rule, with Drucker±Prager

discontinuity surface and von-Mises criteria for the plastic potential. Numerical problems have been

detected in this formulation, namely lack of convergence of the solution in some cases when direct

iteration is used to solve the non-linear problem. Modi®cations introduced in this model were

discussed by Elaskar et al. (1996), but showed some limitations. Thus, a new constitutive model is

explored in this work, using a discontinuity surface due to Gray and Stiles (1988, 1990, 1991) and

Gray et al. (1991), but adapted to the case of critical ¯ow; and a von-Mises (incompressible) ¯ow

rule. The resulting model is based on non-associative plasticity (see, for example, Lade, 1977). The

constitutive model has been implemented assuming steady-state ¯ow, in which the granular material

¯ows under a critical state (incompressible behavior).

In Section 2 we introduce a summary of the plastic discontinuity function employed in the model, as

presented in Gray et al. (1991). Such a function is employed in the viscoplastic formulation of Section 3,

which is writen in the form of viscoplasticity originally due to Perzyna (1966). The apparent viscosity

results in a non-linear function of the second invariant of the symmetric rate of deformation tensor and

of the pressure. The discretization in terms of ®nite elements is described in Section 4, together with the

numerical techniques employed for the solution of the non-linear problem. Comparisons with

experiments carried out by other authors, as well as with independent numerical results, are presented in

Section 5. Results of numerical experiments for two-dimensional and axisymmetric problems are

presented in Section 6, to illustrate how the variables of the constitutive model a�ect the response in
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terms of pressures and velocities. The general procedure employed to simulate the discharge of silos is
discussed in Section 7. The main conclusions of the study are summarized in Section 8.

2. Plastic discontinuity function

In this section we review some basic aspects of a model for the ¯ow of granular materials with
cohesion and friction proposed by Gray et al. (1991). The model is based on continuum mechanics and
the theory of plasticity and considers a rigid-plastic behavior. The constitutive model includes to main
aspects: the discontinuity function and the plastic potential. In its original version, this model of plastic
¯ow is based on an associated rule, in which the same function is employed for the plastic potential and
the discontinuity surface.

The plastic discontinuity function is here denoted by F�Ti, x� and the condition

F�Ti, x� � 0

represents a surface in the Haigh±Westergaard space of principal stresses; where Tij are the components
of the stress tensor. The de®nition of such a surface may also be comprised of a set of internal variables
x. For a rigid-plastic material, stress states represented on the inner volume enclosed by the
discontinuity surface are associated to rigid behavior; while those on the surface are under plastic ¯ow.

The components of the symmetric rate of deformation tensor Dij are given by

Dij � q
@F

@Tij
�1�

where q is a positive scalar and F is the discontinuity function (and also plastic potential). Thus, for
small stresses the material is at rest and it ¯ows under higher values of stresses.

Some experimentally observed features concerning the behavior of granular materials may be
summarized as follows:

. The state representing the unloaded state should be inside or on the plastic discontinuity surface (see
Gray et al., 1991). This means that the discontinuity function plotted in the space of principal stresses
should cross the point of zero stress, or else that point should be inside the volume enclosed by the
discontinuity surface.

. The onset of discontinuity of these materials is modi®ed by the density. Thus, rather than having a
unique discontinuity surface for a given material, there is a family of them depending on the density.
The surface associated to the lowest density is contained inside those of higher densities (see Desai
and Siriwardane, 1984).

. When ¯ow is initiated, a bulk solid with low initial density tends to consolidate. On the other hand, a
bulk solid with high initial density tends to expand. This process continues until the material reaches
a critical state in which it ¯ows with constant density (see Brown and Richards, 1970).

If the principal symmetric rate of deformation tensor components are plotted in the Haigh±
Westergaard space, we notice that whenever there is consolidation of the material the projection of the
symmetric rate of deformation vector on the hydrostatic axis is positive. When the material ¯ows at a
critical state then there is a null projection; whereas the projection becomes negative under dilatancy.

A constitutive model which satis®es the above requirements has been proposed by Gray et al. (1991).
This is a generalization of the model by Pitman and Schae�er (1987), in which a relation between the
discontinuity function and the density of the material is established and the concept of critical state is
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employed to identify the ¯ow properties. Other constitutive models which incorporate those factors are
reviewed for example by Desai and Siriwardane (1984).

The discontinuity surface can be written in the form

F � SII � k2�p� c�m�p� cÿ 2pc � � 0 �2�
where SII is the second invariant of the deviatoric stress tensor

SII � 1
2SijSij �3�

k � sin f; f is the internal friction angle; p is the pressure in the granular solid; c is the cohesion of the
material; the exponent m may take values in the range 0<mE 2; pc is the pressure at the critical state
and is related with the density r by

pc � ar1=b �4�
in which a and b are material constants.

Eqn (2) represents a closed surface, with a vertex at p � ÿc and another one at p � 2pc ÿ c. For
m< 1 the critical state is closer to p � ÿc, while for m > 1 it is closer to p � 2pc ÿ c. The case m � 1

Fig. 1. Gray±Stiles discontinuity surface in the Haigh±Westergaard space (c= 0 and m= 1).
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represents a symmetric surface and was ®rst discussed by Gray and Stiles (1988). Fig. 1 illustrates the
function of eqn (2) when c � 0 and m � 1.

For a given density, the intersection between the surface and an octahedral plane leads to a circular
section with radius

r � k
��������������������������������������������������
2
��p� c�m�2pc ÿ cÿ p��q

�5�

The largest value of the radius is

rm � k

���������������������������
2mm�2pc�m�1
�m� 1�m�1

s
�6�

and occurs at the pressure given by

p �
�

m

m� 1

�
2pc ÿ c �7�

The plots in Fig. 1 have been computed for m � 1 and di�erent values of density. The locus of critical
states is represented by a cone, which is the Drucker±Prager discontinuity surface. We shall employ this
concept, but for values of m 6� 1.

For cases with zero cohesion, the discontinuity surface (2) reduces to

F � SII � k2
ÿ
pm�1 ÿ 2pmpc

�
� 0 �8�

3. Viscoplastic model with non-associated plasticity

3.1. Discontinuity surface

In this section we concentrate on the constitutive model for steady-state ¯ow of granular material
under gravity action. Rather than looking at the ¯ow using solid mechanics and plasticity, we proceed
to carry out our investigation using non-Newtonian ¯uid mechanics and viscoplasticity (see Diez and
Godoy, 1992; Flavigny and Nova, 1990). The following assumptions are made:

. During steady-state ¯ow the material behaves as incompressible, or near-incompressible.

. The ¯ow can be modeled using non-associated viscoplasticity.

The in¯uence of compressibility of the material should be re¯ected in the constitutive equation. This
has been discussed in detail by Elaskar and Godoy (1998a, b), in which numerical results show that the
compressibility of the material only a�ects the results in extreme cases.

For an incompressible material under ¯ow, the yield surface eqn (2) can be simpli®ed. Incompressible
behavior is only possible when the material has a deformation prior to the steady-state ¯ow. It is
assumed that this prior deformation occurs during the transient discharge. With a previous deformation
it is acceptable to assume that the granular material ¯ows in a critical state, so that the density is now
constant. This is an incompressible ¯ow.

The pressure is now a dynamic variable (see Aris, 1989). At the same time, the ¯ow is incompressible
only under critical conditions, with constant density, so that it is not necessary to distinguish between pc

and p in eqn (2).
The discontinuity function is thus modi®ed to the form
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F � SII ÿ k2�p� c�m�pÿ c� � 0 �9�

which will be employed in the present work.
For a material with zero cohesion, eqn (9) reduces to

F � SII ÿ k2p�m�1� � 0 �10�

A plot of eqn (10) for di�erent values of the exponent m is given in Fig. 2. This plot is the intersection
between the discontinuity surface and a meridian plane in the Haigh±Westergaard space. Notice that for
m � 1 we get the Drucker±Prager surface. For m > 1 and p > 1 kPa we get a surface on the exterior of
Drucker±Prager. For m< 1 and p > 1 kPa the surface is inside the Drucker±Prager model. Thus, the
exponent m plays an important role in the de®nition of what stress states are under plastic ¯ow.

3.2. Viscoplastic constitutive equation

There are several theories for viscoplastic behavior, notably those due to Perzyna (1966) based on the
theory of plasticity using internal variables (see Lubliner, 1990; Duvaut and Lions, 1972; Kolymbas,
1994). Here we follow the approach given by Perzyna, in which the general constitutive equation takes
the form

Dij � ghF i @Q
@Tij

�11�

where h i are the Macauley brackets, i.e.

Fig. 2. Gray±Stiles discontinuity surface plotted in the meridian plane (1) m = 0.7, (2) m = 1.0, (3) m = 1.5.
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hF i � F for F > 0 �12�

hF i � 0 for FE 0 �13�

In eqn (11) F is the plastic ¯ow function; Q is the plastic potential; g is the ¯uidity.
Here we employ the ¯ow condition of eqn (9), in which both cohesion and friction are taken into

account. For the plastic potential we employ the von-Mises criteria, valid for an incompressible
material.

Q �
������
SII

p
ÿ k �14�

Notice that if one employs another plastic potential, such as Drucker±Prager, then the material would
not have incompressible behavior. This is clearly seen in the space of principal stresses, where the
gradient of the von-Mises function is orthogonal to the hydrostatic axis while the derivative of Drucker±
Prager is not.

The resulting formulation is based on non-associated plasticity. Such formulation is particularly
adequate for incompressible ¯ow of granular materials. In a formulation based on associated plasticity,
on the other hand, one would ®nd that the plastic potential depends on the ®rst invariant of the Cauchy
stress tensor. Further justi®cation of the use of non-associated plasticity is given by other authors (see,
for example, Lade, 1977).

Substitution of eqns (9) and (14) in the expression due to Perzyna (11) leads to

Dij � gh�SII ÿ k2�p� c�m�pÿ c��i1
2

�������
1

SII

r
Sij �15�

An alternative relation between symmetric rates of deformation and deviatoric stresses can be
obtained from the de®nition of a viscous and incompressible ¯uid, i.e.

Dij � 1

2m
Sij �16�

where m > 0 is the apparent viscosity.
From eqns (15) and (16), one can obtain the apparent viscosity of an isotropic, non-Newtonian ¯uid

that models the ¯ow of the granular solid in the form

m �
������
SII

p
g�SII ÿ k2�p� c�m�pÿ c�� �17�

Notice that the value of m is a non-linear function of the second invariant of the deviatoric stress tensor,
SII and of the pressure p.

A more convenient expression for m can be obtained in terms of Dij. This can be achieved using the
de®nition of SII and DII (the second invariant of the symmetric rate of deformation tensor)

SII � 1
2SijSij DII � 1

2DijDij �18�

Finally, from eqns (16)±(18) it is possible to obtain

m �
�������������������������������������������������������������
2gÿ1

�������
DII

p � k2�p� c�m�pÿ c�
4DII

s
�19�
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3.3. Experimental determination of constitutive parameters

The main interest in this work is to present a new constitutive model to model the ¯ow of cohesive±
frictional granular material and investigate its performance to simulate the discharge of silos and
hoppers. A brief mention regarding how the parameters used in the model can be obtained
experimentally is made in this section.

The most important information of the present constitutive model is summarized by the apparent
viscosity [see eqn (19)]. For an adequate representation of a speci®c granular material, tests should be
carried out to obtain experimental data about the parameters. There are two main classes of parameters
that need evaluation: ®rst, there are parameters which have been employed by other authors, such as
friction angle and cohesion. Second, there are less common parameters, such as the exponent m (Gray
and Stiles, 1990) and the ¯uidity (Diez and Godoy, 1992).

Eqn (9) can be solved for the exponent m

m �
ln

SII

k2�pÿ c�
ln �p� c� �20�

With experimental values of cohesion and the frictional angle, one can plot
������
SII

p
as a function of p

when the material yields. To achieve this we follow Desai and Siriwardane (1984) and carry out
cylindrical triaxial tests: conventional triaxial compression (CTC) and conventional triaxial extension
(CTE) with the stress path having a positive slope; triaxial compression (TC), triaxial extension (TE)
and simple shear (SS) with vertical stress paths. Finally, reduced triaxial compression (RTC) and
reduced triaxial extension (RTE) with a stress path with a negative slope.

In some materials the value of m is not constant and varies with the relation between
������
SII

p
and p. A

mean value can be taken in such cases.
Notice that the exponent m is present because of a discrepancy between the critical state function and

the Drucker±Prager function and for m � 1 the Drucker±Prager function is obtained. In other theories
such as Cap models, the critical state function is not the same as in Drucker±Prager.

The ¯uidity parameter g can be obtained by measurements of viscosity using a parallel-disk
instrument, as explained by Bird et al. (1977). With the viscosity m one can compute the value of g from
eqn (19) as

g � 2
�������
DII

p
4m2DII ÿ k2�p� c�m�pÿ c� �21�

Another way to proceed according to Flavigny and Nova (1990) is by means of creep trixial test
under constant values of SII and p in order to obtain the viscosity.

Aubrey et al. (1985) mention that the ¯uidity is not constant due to ®lms of absorbed water which
modify the contacts between particles.

4. Finite element discretization

4.1. Formulation of viscous ¯ow

The isothermal and incompressible ¯ow of a viscous ¯uid in Eulerian coordinates is given by
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r � T� q � 0 �22�
T is the Cauchy stress tensor and can be decomposed into a deviatoric and a spherical component as

T � ÿpI� S �23�
where I is the unit second-order tensor, p is the hydrostatic pressure

p � ÿTii

3
�24�

and S is the deviatoric tensor. The deviatoric stress tensor can be related to the deformation rate tensor
by means of the apparent viscosity m

Sij � 2mDij �25�
Substitution of eqn (19) into the last equation leads to

Sij � 2

�������������������������������������������������������������
2gÿ1

�������
DII

p � k2�p� c�m�pÿ c�
4DII

s
Dij �26�

The mass forces per unit volume are q. There are two contributions to q: ®rst the mass forces due to
external actions (b); and second, the e�ects due to the dynamic acceleration

q � b � r

�
@v

@ t
� �r 
 vt �tv

�
�27�

where the symbol 
 indicates tensor product.
In the general case, the velocity vector is

vt � �u1, u2, u3 � �28�
However, attention is restricted in this case to plane and axisymmetric problems, for which u3 � 0.

For stationary discharge of a silo, the time derivatives are zero, i.e. �@ � �=@ t� � 0. Finally, the velocity
is assumed to be small, so that the convective acceleration can be neglected (see Scha�er, 1987)

@v

@t
� �r 
 vt �tv � 0 �29�

Finally, substitution of eqns (23), (26) and (29) into the equilibrium eqn (22) yields

2
@

@xj

24 ������������������������������������������������������������
2gÿ1

�������
DII

p � k2�p� c�m�pÿ c�
q

4DII

Dij

35ÿ @p

@xi
� rgi � 0 �30�

Notice that the above set of eqn (30) reduce to the Navier±Stokes equations whenever m is constant.
The di�erence is due to the dissipative term. In a viscous ¯uid the dissipation takes place due to
collisions between molecules; however, in the ¯ow with low velocities as in the discharge of grains, there
is a sliding between particles. In the Navier±Stokes equations the dissipation is a function of the velocity
and is independent of the pressure; however, in the present formulation the dissipation depends on the
pressure and not on the velocity.

To obtain a more complete description of the ¯ow, the continuity equation is required and in this
case reduces to
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@ui
@xi
� 0 �31�

Alternatively, one can write

Dii � r � vt � 0 �32�
Finally, the boundary conditions of the problems are

ui � wi �33�

Tijnj � hi �34�

. Eqn (33) is a kinematic boundary condition appropriate for solid boundaries and symmetry
conditions. This is the only boundary condition employed in the computations of the present work.

. For a rigid boundary the condition of no penetration is satis®ed; furthermore, the condition of no
sliding is considered in the present computations. To model the grain±wall friction a thin layer of
®nite elements has been employed next to the wall. Experimental values of cohesion and friction for
grain±wall interface should be employed on those elements. This is an accurate and economical
technique which has been employed previously in the context of metal forming processes and by the
authors for the discharge of silos (Diez and Godoy, 1992; Elaskar et al., 1996).

. For conditions of symmetry, the transverse component of velocity should be zero. This is imposed at
the center of a silo when there are symmetric conditions of geometry, material and ¯ow.

. For the transient discharge of silos, the mechanical boundary condition of eqn (34) is a possible way
to consider the frictional e�ects that occur between the grains and the walls (see Haussler and Eibl,
1984). If a model with Newtonian friction between grain and wall is employed, then a non-linearity is
introduced into the formulation on the boundary condition and it is necessary to use eqn (34).

For the ®nite element discretization of the model it is convenient to employ the following matrix
notation

Dii � mtD � 0 �35�
where mt=(1, 1, 0) for planar problems; and mt=(1, 1, 0, 1) for axisymmetric problems.

The symmetric rate of deformation tensor is

D � Lv �36�
where, for plane problems

L �

2666666664

@

@x1
0

0
@

@x2

@

@x2

@

@x1

3777777775
�37�

Dt � �D11,D22, 2D12 � �38�
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while for axisymmetric problems

L �

26666666666664

@

@x1
0

0
@

@x2

@

@x2

@

@x1

1

x1
0

37777777777775
�39�

Dt � �D11,D22, 2D12,D33 � �40�
For an incompressible, viscous and isotropic ¯uid, the constitutive equations are (Zienkiewicz and

Taylor, 1991)

S� � mmmEsD �41�

Matrix Es is diagonal. For plane problems one has

Es �

2664
2 0 0

0 2 0

0 0 1

3775 �42�

while for axisymmetric problems

Es �

2666664
2 0 0 0

0 2 0 0

0 0 1 0

0 0 0 2

3777775 �43�

4.2. Integral formulation

The weak formulation of the equilibrium problem in eqn (22) yields the virtual power condition�
O
dDijTij dO �

�
O
duibi dO�

�
G
duiti dC �44�

The forces ti are applied on the boundary G of the body, while the volume forces bi act on the volume
O. The symbol dui indicates the virtual variation of ui.

The continuity condition states that any virtual variation of the pressure, dp, does not produce work
(see, for example, Hughes, 1987).�

O
dpDii dO � 0 �45�
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A penalty function is next introduced, so that the pressure is not a primary variable of the
formulation. Volume changes in the incompressible ¯uid are written as

Dii � ÿpa10 �46�

where a is a penalty parameter, which is a ®nite but large value, to ensure the incompressibility
condition in approximate form.

Then, eqn (44) can also be written as�
O
dDij2mDij dO� a

�
O
dDiiDii dO �

�
O
duibi dO�

�
C

duiti dC �47�

4.3. Discretization

The discretization of the velocity ®eld is carried out in this work by ®nite elements, leading to

v � Nae �48�
where matrix N contains the shape functions of a given element Oe and the nodal values of velocity
are

ae � ÿu11, u21, . . . , uN1 , u
N
1

� �49�
Lagrangian quadrilateral elements with nine nodes are used in this work. The formulation of such
elements is rather standard and may be found in texts on ®nite elements such as Zienkiewicz and Taylor
(1991). The ®nal form of the assembled system is�

Ks�a� � aKv��a � f �50�

where Kv are the volumetric contributions and Ks are the deviatoric components; f is the global load
vector and a is the global velocity vector. This is a non-linear system due to the constitutive model
employed.

4.4. Numerical integration

In eqn (50) one can verify that for large values of a (the penalty parameter) then

Kva 1 f

a
4 0 �51�

Thus, to obtain a non-trivial solution it is necessary to impose a condition of singularity on Kv. This has
been noticed by many authors (see, for example, Hughes et al., 1979) and reduced integration has been
used to model the singularities in Kv, while standard integration is imposed upon Ks.

The viscosity m is evaluated at four integration points on each element, according to the reduced
integration rule adopted. Several ways can be followed to have m at other points and a constant value of
m has been adopted in this work as the average

me � 1
4

ÿ
me
1 � me

2 � me
3 � me

4

� �52�

The penalty parameter varies from one element to another according to the value of me, in the form
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ae � Bme �53�

where B takes values between 104±1010. This option has been implemented in the present code because
the convergence characteristics are improved with respect to other options considered.

4.5. Solution of non-linear system

Direct iteration has been employed to solve the non-linear system of equations. Notice that matrix Ks

Fig. 3. Geometric description of the plane silo studied by Kmita.
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depends on the viscosity m, while m depends on DII and p. Direct integration has been employed in the
present context for example by OnÄ ate (1986) for metal forming problems and will not be described here.

5. Comparison with experimental results

Two sets of experimental results have been used to compare with our computational simulation. The
®rst is a silo, Fig. 3, while the second is a hopper shown in Fig. 4. It should be mentioned that it is
di�cult to ®nd experiments published in the literature with the appropriate parameters identi®ed so as
to check numerical models.

The silo is a plane problem, while the hopper is axisymmetric and both have been discretized using
130 Lagrangian elements. The boundaries are assumed to have zero velocity (no slip) in contact with the

Fig. 4. Geometric description of the axisymmetric hopper.
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walls of the structure. However, a thin layer of ®nite elements is introduced in contact to the wall to
simulate the frictional properties between granular solid and wall. Initial conditions are not speci®ed
because the problem is solved as steady-state. The only external action present in this problem is
gravity.

5.1. Plane silo

Kmita (1991) tested the ¯ow in a silo of 2.55 m in height ®lled with rinsed grit with c � 0, f � 338
and the angle of friction between the granular material and the wall was f � 338. Here we adopt a
discontinuity surface with m � 0:65 and for the viscoplastic ¯ow we used g � 1 1/kPa s and r � 1623
kg/m3. The iterative procedure starts with a constant value of m0 � 150 kPa s throughout the mesh of
130 elements and convergence is achieved with a norm e � 0:01. The angles of friction f, fw and the
density r are taken from Kmita (1991). The exponent m and the ¯uidity g should be obtained from the
experiment for speci®c granular materials, but in this work we have representative values and explore
the sensitivity of the solution as they change.

The results presented by Kmita (1991) are restricted to pressures on the wall of the silo and these are
compared with our results in Fig. 5.

For this complex problem, the numerical results show qualitative agreement with the experiment and
good numerical correlation. The pressure distribution along the lower part of the silo, for which there is
experimental data, shows the same trend and the peak pressure at the junction between the two
geometries of the silo is estimated well by the computations.

The distribution of viscosities at the steady state is shown in Fig. 6. Close to the outlet of the silo one

Fig. 5. Comparison of present result with experimental values by Kmita. (1) Present result, Q values of Kmita.
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Fig. 6. Distribution of viscosities inside the plane silo. (1) 0.01 kPa s E m < 10 kPa s, (2) 10 kPa s E m < 100 kPa s, (3) 100 kPa

s E m < 1000 kPa s, (4) m e 1000 kPa s.

Fig. 7. Comparison of present results with other experimental and analytic results. (1) Theory of Nguyen et al. (2) theory of

Walker and Blanchard, (3) present result, Q Walker upper bound, R Walker lower bound.
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Fig. 8. Distribution of viscosities inside of the axisymmetric hopper. (1) 0.01 kPa s E m < 10 kPa s, (2) 10 kPa s E m < 100 kPa s,

(3) 100 kPa s E m < 1000 kPa s.

Fig. 9. Silo. In¯uence of the ¯uditiy parameter on the wall stress. (1) g � 0:1 1/kPa s, (2) g � 1 1/kPa s, (3) g � 10 1/kPa s.
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®nds small values of viscosities and these are increased near to the top of the silo. In general terms, the
viscosity m increases from bottom to top and from the walls to the center of a vertical silo under gravity
¯ow.

5.2. Axisymmetric hopper

Our second example to test the present model is an axisymmetric hopper studied by Walker and
Blanchard (1967) and Nguyen et al. (1979) using analytical models and by Walker and Blanchard (1967)
by means of experiments. The geometry is shown in Fig. 4, with zero cohesion, an angle of friction of
258 and a grain±wall friction angle of 158.

The mesh employed for the hopper has 130 elements. Data for this case is as follows: f=258,
fw=158, m = 1.5, g=1 1/kPa s, e=0.01, r=150 kg/m3, and m0 � 150 kPa s, values of friction angles
and density were taken from Walker and Blanchard (1967) and Nguyen et al. (1979).

Results of stresses on the wall are plotted in Fig. 7 for di�erent elevations. We have also plotted what
are called the upper bound and lower bound experimental results in the paper of Walker and Blanchard
(1967). The present model has good agreement at the lower part of the hopper, i.e. up to approximately
3 m in height. At the top of the hopper, the present model yields values close to the lower bound. There
is also a good estimate of the maximum load on the wall. Independent analytical results are also shown
in Fig. 7.

An interesting point is to investigate how the apparent viscosity m changes inside the bulk solid at the
steady state. Results are shown in Fig. 8, with low values of m at the lower part of the hopper and close

Fig. 10. Silo. In¯uence of the ¯uidity parameter on the center velocity. (1) g � 0:1 1/kPa s, (2) g � 1 1/kPa s, (3) g � 10 1/kPa s.
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to the walls (0.01 kPa sE mE 10 kPa s), where the maximum velocities occur. Large values of m are
computed at the top of the hopper (m>100 kPa s).

6. Numerical results

The sensitivity of the numerical solution with respect to changes in the internal parameters of the
model is investigated in this section. There are some physical parameters, such as the ¯uidity parameter
g, the exponent m, the angle f, the cohesion c, etc., for which it would be important to understand how
they in¯uence the response. A second group of parameters is related to the technique of the solution
adopted in this work, including the penalty parameter a and the initial viscosity m0.

In the steady-state solution, the apparent viscosity m is a variable in terms of the location inside the
¯owing grain. To start the iterative process we assume an initial viscosity and this is rede®ned during
the iterations until convergence is reached. With the converged values of pressure and velocity, the
viscosity also reaches convergence.

In the studies that follow we have solved the problems using a constant value of the initial vicosity,
m0, throughout the ®nite element mesh.

Two cases are considered to carry out the parametric studies: the silo and the hopper discussed in the
previous section. The purpose of the studies that follow is to investigate how the choice of a parameter

Fig. 11. Hopper. In¯uence of the ¯uidity parameter on the wall stress. (1) g � 0:1 1/kPa s, (2) g � 1 1/kPa s, (3) g � 10 1/kPa s.
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in¯uences the solution and as such this indicates what parameters should be determined experimentally
with better accuracy.

6.1. In¯uence of the ¯uidity parameter

6.1.1. Plane silo
For the silo considered and with a constitutive model with m � 0:65, we have computed results of

pressure and velocities for di�erent values of the ¯uidity parameter. The values assumed in Figs. 9 and
10 are g=0.1, 1 and 10 1/kPa s. The initial viscosity was taken as constant, with m0=150 kPa s.
The pressures on the wall are shown in Fig. 9 and display the same pattern even though there are

signi®cant changes in g. There is an increase from 13±15 kPa in the maximum pressure, as g is increased
from 1±10 1/kPa s.

The velocity at the center is shown in Fig. 10 and are seen to increase with the ¯uidity g. For g � 0:01
1/kPa s the velocity is very small.

As g increases, the number of iterations required to obtain convergence also increases. For example,
with g � 0:1 1/kPa s the number of required iterations was 21; with g � 1 1/kPa s the number of
required iterations was 27; while 35 iterations were necessary to obtain convergence for g � 10 1/kPa s.

6.1.2. Axisymmetric hopper
A similar investigation on the in¯uence of g was carried out for the hopper and the results are

Fig. 12. Hopper. In¯uence of the ¯uidity parameter on the center velocity. (1) g � 0:1 1/kPa s, (2) g � 1 1/kPa s, (3) g � 10 1/kPa s.
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summarized in Figs. 11 and 12. The pressures are almost the same for g � 1 and 10 1/kPa s, but for
g � 0:1 1/kPa s there are smaller values of pressure on the walls.

The velocity at the center of the hopper increases with g, as in the case of the silo.
The number of iterations necessary to obtain convergence of the solution was as follows: g � 0:1, 1

and 10 1/kPa s for 22, 28 and 30 iterations, respectively.
Notice that both the silo and the hopper displayed similar ¯ow behavior as a function of the ¯uidity

parameter g, even though they included di�erent bulk material and geometries. The overall conclusion
of this parametric study is that it is necessary to carry out experimental studies to evaluate g for cereals;
but it seems that for practical cases (ge1 1/kPa s) the pressure are not very sensitive to errors in the
evaluation of g. The velocity of the particles during discharge, on the other hand, are highly dependent
on ¯uidity.

6.2. Sensitivity with respect to changes in the exponent m of the discontinuity surface

The value of the exponent m in eqn (9) characterizes the shape of the discontinuity surface employed
as seen in Fig. 2.

6.2.1. Plane silo
Parametric studies were conducted on the plane silo problem to observe the in¯uence of m on the

Fig. 13. Silo. Wall stress sensitivity with respect to changes in the exponent m on the discontinuity surface. (1) m= 0.5, (2)

m= 0.6, (3) m= 0.65.
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velocity and pressure, using the values m = 0.5, 0.6, 0.65, 0.7 and 1.3. The other parameters of the
constitutive equation were g=1 1/kPa s, with m0 � 150 kPa s.

The pressure does not have a monotonic change with m. The maximum pressures were obtained in
Fig. 13 with m � 0:6, for which it was necessary to iterate 22 times. For m � 0:65, on the other hand, 27
iterations were required; for m � 0:5 convergence required 14 iterations; and no convergence was
obtained with m > 0:65.

The values of velocity are shown in Fig. 14, with the lowest values occurring for m � 0:5 and the
maximum for m � 0:65. The best approximation to the experimental results was shown to occur for
m � 0:65.

6.2.2. Axisymmetric hopper
A study on the in¯uence of m was also done for the hopper problem, using values of 0.65, 1.0, 1.5,

1.65, 1.7 and 1.75. The results are presented in Figs. 15 and 16 and re¯ect the response to di�erent
material properties.

Both the pressures on the wall and the velocity increase with the value of m are considered.
All four curves considered in Fig. 15 fall within the range of experimental results; however, a better

approximation is obtained with m � 1:5 and m � 1:65. Lack of convergence of the iterative process was
found for me 1:7.

Fig. 14. Center velocity sensitivity with respect to changes in the exponent m on the discontinuity surface. (1) m = 0.5, (2)

m= 0.6, (3) m= 0.65.
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Notice that one cannot identify appropriate values of m from the present parametric studies; in any
case they should be obtained experimentally as indicated by Gray and Stiles (1991). What the present
studies highlight is the variability of pressures with m, especially for lower values of the exponent.

6.3. In¯uence of the initial viscosity

The initial viscosity m0 is introduced at the beginning of the iterative process, but the actual value
chosen to start the analysis has an in¯uence on the ®nal results.

6.3.1. Plane silo
For the silo problem we have performed the analysis using m0 � 25, 50 and 150 kPa s and the results

are presented in Fig. 17 (pressures) and Fig. 18 (velocities). The pressure pro®le obtained is the same in
all cases, with some di�erences between the lowest values (m0 � 25 kPa s) and higher values (m0 � 50 or
150 kPa s). The same trend is shown in Fig. 18 for velocities.

The number of iterations necessary to obtain convergence of the solution with e � 0:01 is as follows:
m0 � 25, 50 and 150 kPa s with 25, 26 and 27 iterations, respectively.

6.3.2. Axisymmetric hopper
Three values of m0 were considered in this case: m0 � 50, 100 and 150 kPa s.

Fig. 15. Hopper. Wall stress sensitivity with respect to changes in the exponent m on the discontinuity surface. (1) m= 0.65, (2)

m= 1, (3) m= 1.5, (4) m= 1.65
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Fig. 16. Hopper. Center velocity sensitivity with respect to changes in the exponent m on the discontinuity surface. (1) m = 0.65,

(2) m = 1, (3) m = 1.5, (4) m = 1.65.

Fig. 17. Silo. In¯uence of the initial viscosity on the wall stress. (1) m0=25 kPa s, (2) m0=50 kPa s, (3) m0=150 kPa s.
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Fig. 18. Silo. In¯uence of the initial viscosity on the center velocity. (1) m0 � 25 kPa s, (2) m0 � 50 kPa s, (3) m0 � 150 kPa s.

Fig. 19. Hopper. In¯uence of the initial viscosity on the wall stress. (1) m0 � 50 kPa s, (2) m0 � 100 kPa s, (3) m0 � 150 kPa s.
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Fig. 20. Hopper. In¯uence of the initial viscosity on the center velocity. (1) m0 � 50 kPa s, (2) m0 � 100 kPa s, (3) m0 � 150 kPa s.

Fig. 21. Silo. In¯uence of the penalty parameter a on the maximum wall stress.
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The initial viscosity m0 has a negligible in¯uence on the values of pressures and velocities as re¯ected
by Figs. 19 and 20.

6.4. In¯uence of the penalty parameter a

In our ®nal study, the actual value of the penalty parameter a is investigated for the silo of Fig. 5.
The values of a considered were a=104, 107 and 1010. The results of Figs 21 and 22 show that the
solution stabilizes for large values of a e 107. Similar conclusions were obtained for a number of other
problems, so that a is recommended to be set to 107 or larger.

7. Discussion

The presentation of previous sections concentrated on the simulation of pressures on the walls of silos
and hoppers during a stationary discharge. Furthermore, sensitivity studies were performed to understand
the in¯uence of di�erent constitutive parameters on the results. In this section a few remarks are made
regarding the application of the model to a new situation for a given material stored inside the silo:

. The geometry of the silo should be available.

. A ®nite element mesh should be built, including a thin layer of elements close to the boundaries to
model the wall±grain friction. The angle of friction between the wall and the grain should be known
or estimated.

. The constitutive parameters of the material should be speci®ed, including cohesion, friction, ¯uidity
and the exponent m. There is a large literature on the evaluation of cohesion and friction; however,

Fig. 22. Silo. In¯uence of the penalty parameter a on the outlet velocity.
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¯uidity should be evaluated using the techniques mentioned in Section 3.3.
. For values of ¯uidity larger than 1 1/kPa s, the present numerical results show that the pressures on

the walls are not a�ected by ¯uidity. Of course, this observation is based on a limited number of
cases studied, however, for di�erent silo geometries and material properties, the loads on the walls are
not a�ected by ¯uidity larger than ge 1 1/kPa s.

. The exponent m required by the present model should be evaluated experimentally as indicated in
Section 3.3. The numerical results showed that the best ®tting to experimental results was obtained
with the largest value of m for which convergence was achieved.

. A penalty parameter ae 107 was found to be adequate for all purposes, including velocities and
pressures and is recommended. Such values are also recommended in the literature for viscous and
incompressible ¯ows (Hughes, 1987).

. Finally, the initial viscosity m0 should be speci®ed to start the computations. Studies of sensitivity of
the solution for di�erent choices of m0 in hoppers show that it does not a�ect the results in the
present model, so that a value of m0 � 150 kPa s may be employed as a starting guess in these cases.
The iterative process evolves from the initial guess to the converged result.

8. Conclusions

The main conclusions drawn from the present constitutive model and the numerical studies may be
summarized as follows:

The constitutive equation presented in this work can model the main features of the steady mass-¯ow
in silos and hoppers. It also seems that the hypothesis of ¯ow under critical conditions (incompressible
behavior) is adequate in steady-state analysis.

A crucial parameter that should be obtained experimentally is the ¯uidity of the granular solid. We
did not ®nd experimental values in the literature, so that sensitivity of the results was investigated in
order to obtain meaningful values in the simulations. The in¯uence of g on the pressures is not
important if g e 1 1/kPa s, but it is very important in the computation of the velocity ®eld. In cases
where the mass ¯ow is known, one could have good estimates of g. Further data is very important here
before one can have accurate predictions of velocities.

It was shown that both pressures on the wall and velocities inside the bulk solid depend on the
discontinuity surfaces, as modi®ed by the exponent m. This exponent ranges from 0±2 and re¯ects
di�erent shapes of the discontinuity surface, with the critical state moving from near to the state with
lowest hydrostatic pressure to close to the state with the highest pressure.

An independent evaluation of the discontinuity surface is necessary in each case before the present
viscoplastic ¯ow model can be applied. Tests of this kind are in progress at the moment for some
agricultural products (soy, rice, wheat, sun¯ower and sorghum) and are expected to provide independent
values of the exponent m.

In the present model the results are not signi®cantly a�ected by the choice of the initial viscosity m0 at
the start of the iterations. Notice that this was a serious problem found with the original model of non-
associative ¯ow using Drucker±Prager/von-Mises, as reported by Elaskar et al. (1995).

Identi®cation of an adequate penalty parameter a should be done in each problem, to make sure that
the solution falls within a plateau. For the cases considered it was found that ae107 was adequate, even
though the geometries and material properties showed large di�erences.

The constitutive model presented in this paper for viscoplastic ¯ow of granular solids is more complex
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than that discussed by Diez and Godoy (1992), as it includes the exponent m that should arise from
experiments. The loss of simplicity has the great bene®t that convergence is achieved with similar
computer resources and a low number of iterations.

Models based on particle mechanics, on the other hand, may provide good estimates for the same
problems, by using much larger computer resources.
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